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Modes in Radial Wave Beam Resonators
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Abstract—Resonant modes in ring shaped resonators formed by a
reflector strip bent into a circle are discussed here. These modes are
derived by superimposing two radially propagating wave beams, one
converging toward the resonator axis, the other one diverging from
this axis. The condition for resonance leads to an integral equation
whose eigenfunctions describe the field distribution at the reflector
strip and whose eigenvalues determine the diffraction loss due to the
fraction of energy bypassing the reflector.

The approximations made in deriving the radial beam mode sys-
tem are equivalent to those used for the derivation of the axial beam
mode system in a Fabry-Perot resonator. Within the limits of these
approximations the kernel of the integral equation for a ring resonator
is of the same form as the kernel of the integral equation for a parallel
strip resonator. If in the radial case the reflector strip is also curved
within the axial planes with a radius of curvature equal to the
diameter of the reflector ring, and if the width of the reflector strip is
sufficiently large, the axial field distribution of the modes is described
by Gauss-Hermite functions.

The @ of the ring resonator is determined by the diffraction loss
and by reflection loss caused by the finite conductivity of the reflector.
Formulas for the corresponding Q-values are derived. A numerical
evaluation shows that in the microwave region ¢-values of the order
of 10 are feasible.

INTRODUCTION

HE ELECTROMAGNETIC FIELDS in beam
Twaveguides and Fabry-Perot resonators can be

described by a system of axially propagating beam
modes whose cross-sectional field distribution is iter-
ated at periodic intervals. In the resonator case, the pe-
riod of iteration is one round trip of the beam between
the two reflectors. The iteration is accomplished either
by diffraction effected by limiting the beam cross sec-
tion or by transformation of the cross-sectional phase
distribution of the beam. The first case applies to the
iris-type beam waveguides [1] and to Fabry-Perot reso-
nators [2] with plane reflectors; the second case to
lens-type beam waveguides [3], [4] and to resonators
with spherical reflectors [2], [5].

This paper is concerned with ring-shaped resonators
as shown in Figs. 1 and 2. The field in these resonators
can be described by a system of radially propagating
beam modes which have common features with the
axially propagating modes in Fabry-Perot resonators.

The derivation of this radial mode system is based on
the following physical consideration. Assume a beam
which originates at the inner surface of the circular re-
flector strip and converges toward the axis of the reson-
ator. After crossing the center area the beam diverges
and returns to the reflector. The condition for resonance
is that the field of the returning beam when reflected at
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Fig. 1. Ring-shaped resonator (straight contour in planes ¢ = const.)
-
e
\\
Fig. 2. Ring-shaped resonator (curved contour in planes ¢ = const.)

the circular strip has the same cross-sectional amplitude
and phase distribution as the original beam. Then the
reflected beam can be identified with the original beam,
and the assumed state of excitation is sustained. Tlhis
consideration of course, disregards diffraction loss which
is caused by the fact that a fraction of energy of the
returning beam bypasses the reflector. This loss can be
thought of as compensated for by a distributed power
source at the reflector.

The mathematical formulation of the resonant condi-
tion leads to an integral equation whose eigenfunctions
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describe the fields of the resonant modes at the reflector
and whose eigenvalues determine the diffraction loss.
The integral equation is of the same kind as that for
parallel strip resonators.

MATHEMATICAL FORMULATION OF THE
ResoNaNCE CONDITION

The field in the resonator from the vector potentials
®z and & where ® and ¢ satisfy the scalar wave equa-
tion. The corresponding field components are:
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¢ is the unit vector in the z-direction of a cylindrical

coordinate system p, ¢, 5 (see Fig. 1). The general solu-

tion of ® and ¢ can be written in the form

[

+c0

®(p, 6, 2) = 2 [®aP(p, 2) + 80P (p, 5)]em

M=—00

+oo
0,09, ) = [ OO HO e (3)

—o0

+0
Vo, ¢,2) = 2 [TnD(p,2) + ¥u®(p, 2)]eim
+c0
V000, 2) = | g W HL D () dh (4)
with
+ VE2—I? for 2 < B2
— i\ — k2 for 2% > k2.

fu(h) and g.(h) are the amplitude functions of the E-
and H-waves, respectively. Assuming the time factor
ei«t cylindrical waves converging toward the z-axis are
described by the Hankel functions H,”, and waves
diverging from this axis by the Hankel functions H,®.

Small diffraction losses can be expected only if the
radially propagating beams have small angles of diver-
gence from the z=0 plane. We therefore assume the
amplitude functions f and g to be essentially zero for
k2> h? where h<<k. In particular we disregard any radial
evanescent waves (h2>k?) and furthermore restrict p
to a finite range 0<p<p in which the phase angle of
the Hankel function can be approximated by
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Nulvp) Nu(kp)
arctan = arctan
1 h?/k?

ﬁ S (6)
m Ju?(kp) + Nu?(kp)
(Jm and N,, are the Bessel Functions of the first and
second kind). The next term in this expansion causes a
phase error smaller than 6 where

) L di N

LY radian.

If, for instance, p is 100 wavelengths and 2=0.1k, we
obtain § =0.0057. Since h2<<k?, v in the argument of the
absolute value of H,® (yp) can be replaced by k.
Thus

H, D (yp) =~ H, D (Rp)et st amtio (8)
1
tn(kp) = — [T (ko) + Nu(lp)] . 9

With this approximation ®,, becomes

8, % (p, z)

+o0
=Hm(3)(kp)f T @ (B)etiiD o) g=shzdfy. (10)

Corresponding expressions are obtained for ¢,V and
Yn®.

In formulating the condition for resonance we assume
that the fields are essentially confined to the region
p<po, —20<2< +3¢ where 2po( <2p) and 23z, are diam-
eter and width of the reflector strip, respectively (see
Figs. 1 and 2). This assumption is justified by the re-
sults which show that the fields decrease very rapidly in
the +z-directions. In accordance with this assumption
we postulate for the converging beams the following
potential distributions at p =py:

Fn.(2) —z0 <2< + 3
B, (g, 7) = == 11
(0 ) 0 IZI > 2 ( )
v, o Gz -3 <L +¢2
5o, 5) = (%) 0 0 (12)
op 0 | 5] > 2.

The conditions ®,,Y(po, 2) =0 and (., /dp)(pe, 2) =0
for | z| > 2, ensure that no power is supplied to the reson-
ator from the outside.

For resonators of the kind shown in Fig. 2 which are
curved within the axial planes ¢ =const, the potential
distribution functions F,, and G, at p =p, are connected
with those at the reflector surface F,, and G,, by the rela-
tions

Frn(3) = Fp(z)ei®I2R):
Gu(z) = Gu(z)eith/2R)4

(13)
(14)

where R is the radius of curvature within the planes
¢ =const.
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The amplitude functions f,® and g, of the con-
verging beams can be obtained from (3) and (4), re-
spectively, by a Fourier transformation in z.

1 1 +20
() = — ) f F(¢)et ®I2R) ptort g 15
f () I Hm(l)('yp) oy (?)6 € ¢ ( )
1 +z0
e V() = — Gm(g-)e+J(k/2R)(2e+jh(d§-. (16)

25 v Hy ™ (yp) —

At the center of the resonator the converging beam
transforms into the diverging beam. The corresponding
amplitude functions f,® and g,® are obtained from
the condition that the total fields &,V +&,® and
W, W4, are finite at p=0. This requires

O =@M, gn @) = gn® ().

The potentials ®,,® and ¥, ® of the diverging beam
are obtained by inserting (15), (16), and (17) into (3)
and (4). At p=p¢

o0 +z0 (2)
®, (0o, 7) = if Fm(§)6+J,(k/2R)§zH_m_(’)’_PQ
2

amn

mJ _ J s Hy D (7vpo)
e~ =Ded ) (18)
+co ~+z0 (2)
U, (po, 2) = if Gm@eﬂwmzm
2rd o J s YH @' (vp0)
eI dEd R, (19)

The boundary condition at the reflector surface re-
quires that the tangential electric field components be
zero. Since part of the diverging beam bypasses the
reflector, resonance can be sustained only if power is fed
into the system, for instance by a distributed source at
the reflector surface which raises the amplitude of the
diverging beam by a factor p. This factor p 1s assumed
to be positive real so that the source delivers only real
power and does not detune the resonator.

In the case of resonators of the kind in Fig. 2 we again
have to consider the phase shift between the reflector
surface and the cylinder surface.

The resonance condition can then be formulated as
follows:

Eqs = 0:
m 0 . 9 - 2
800 (oo, eI 2 Do, 2)e ]
po 02
d . 2
b [, i
dp
+ PED (o, )R, =0 (20)
E,=0:

62
(k2 + ) [,V (po, 2)e= #1202

932
+ &, (oo, 2)eriGkIER)E] =

for —z0 <2< 4+ 3. (21)
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The condition Ez=0 is only an approximation for
resonators shown in Fig. 2, since E; differs somewhat
from the actual tangential component in the ¢ =const.
planes. It is readily seen that the ®- and W-fields are
decoupled. From (21) we find

®,, D (pg, 2)e I EI2RI L p, (D (g 7)e+iFBI2R)

= detis =0  —z <2< 4+2. (22

The constant 4 must be zero, since the supposition of
radial beams excludes plane waves in the +z-directions.
Therefore with (20)

3 o, |
o, 100, e 70T - pUn (o, et = 0

— % S P4 S + Z0e (23)

Substituting in (22) &, with (11) and (13), $,.® with
(18) we obtain a homogeneous integral equation of the
second kind for the distribution function F,, of the elec-
tric vector potential on the reflector surface

+20
Fu(z) = Ko(z O)Fu()dt
w0
—n<z<+2 (24)
+o0 (2)/(
Ks(z ) = — ig+j(k/'3R)(z2+!2)f Hn (vp0)
2 o Hun®(vpo)
D dh, @5)

Similarly by substituting (12}, (14), and (19) into (23)
we obtain the integral equation for the distribution func-
tion G, of the magnetic vector potential on the reflector
surface:

+z0

Gnlz) = p Ky(z, 0)Gu(0)dt

—2g

—5n <zl 45 (20
+o (2)" ( N
Ku(z, ) = — i e+f(k/2R>(z2+r2)f Hm—(ypo,;_
277' —o0 Hm(l)'(,ypo)

gD dh, 27

Using the approximation (8) for the Hankel functions
the integral in the kernel (25) can be evaluated analyti-
cally. One obtains

k

e g3 [2Bm (kpo) 37 [4]

1
/81 ~/an(kpo)

K<I><Z; f) =

. @I LK 12R) (P19 — U yam (kpo) ) (o= 1) 7] (28)
with
N (kpo)
Bnlkpg) = arctan A
L (kpo)

The kernel (27) contains the differentiated Hankel
functions which can be approximated by
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H, " (vp) = Bl (kp)ew0*0on0 - 0 < p <5 (29)

since amplitude terms of the order %2/k? can be neglected
within the range of the approximations.
Thus evaluating the integral in (27)

Ku(z, {) = — = ¢ 4126 Ghp0)F37/4]
Y V81 A/ an(kpo)
. ga [k 12R) (22— (b [Seam (kp0)) (#—8)°] (30)
with
N,/ (R
B’ (kpo) = arc’can—l(—p—(2 .
T (kpo)
If koo>>m?, o, Bm and B, can be approximated:
am(kpo) = P kpo
(o) = E <+1>1r+4m2—1
m = —\m —_— ]
it Lo PO 2 2 8kpo
Bl (kpo) = k < 1>”+@M+3 (31)
m \RPo) = Rpo 2 ) 8kpo
Using the substitutions
ped128n o)+ 37/ )]
K= { , (32a)
pg_J[Qﬁm'(kPO)'F(?ﬂr/U]
F..(2) & — fields
Fx) = { (32D)
Gu(z) ¥ — fields
1 k 1 k
B=— ez, f=— ————,
2 \/ am(kpo) 2 \/ Olm<k.00)
1 k an(k
2o = LGPV

S .
2~/ am(kpo)

the integral equations (24) and (26) can be reduced to
a normalized form
+ro

Fx) = % F(g)e i@ entd

T g

—x <2< +x. (33)

The eigenfunctions F(x)=F®™(x) determine the field
distribution of the various modes of the resonator at the
reflector surface, and the eigenvalues k=« the cor-
responding diffraction loss.

Discussion

The integral equation (33) is of the same form as the
one which is obtained for the parallel strip resonator
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which has been studied by a number of authors. The
case of Fig. 1 where the reflector is of cylindrical shape
(R=», ¢=1/2) corresponds to a plane-parallel strip
resonator [2], [6]; the other case (Fig. 2) with R o
corresponds to a parallel strip resonator with two identi-
cal parabolic reflectors [7]-[9]. If R is finite but greater
than po, the field is primarily determined by the radii
po, and R and depends little on the width of the reflector

strip, provided
1 k
Xo = — ——=———=— 2%
2 \/am(kPO)

is sufficiently large.
The case

am(kpo)
E

R =4

corresponds to the parallel strip resonator with confocal
reflectors [5], [10]. If kpo>>1 the approximation for
a, in (31) applies so that R=2p,. The corresponding
integral equation is of particular interest in that the
kernel reduces to a Fourier kernel:

Kz, ) = \/127 et (34)

The eigenfunctions of this integral equation are angu-
lar prolate spheroidal functions [11]. Using Flammer’s
notation [12]

Wm=%Qw$. (35)

Yo
The function S, form in the range —x,<x<-+4x a
complete orthogonal system

+z0 x x
f Son <x02; __‘> SOk <x02, —<> dx = anan
—zq Xo Xo

where N, is a normalization constant. The S, are real
functions of ¥ which are even and odd with #. The cor-
responding eigenvalues k™ are real for even # and
imaginary for odd #:

7
. 7" — xRon M (2% 1)
K T

where Ro,® are radial prolate spheroidal functions. In
view of subsequent calculations of the Q of ring reson-
ators, numerical values of ™ are given in Table I.
Values for k™ with #>0 can be found in the literature

[51, [9].

(36)

TABLE I
TrE LowEsT ORDER EIGENVALUE ™ OF INTEGRAL (33)

1.6 1.8 2.0

Xo

2.2 2.4 2.6 2.8

P 1.02614 1.00808 1.00206

1.00043 1.00001 1.00008 1.00000




1965

Equations (32a) and (36) yield relations for the reson-
ant wavelengths Ay ,,,.. The quantity p in (32a) is posi-
tive real, as explained in the text following equation
(19). Hence for resonant modes derived from the poten-
tial & we obtain

Po
N, (271' >
7 i Aimn 3
!+ — — —arctan ———— — — = 0, (37a)
4 ™ Po 8
I | 2
>\Zmn
and for the modes derived [rom the potential ¥
Po
N, <21r >
n )\lmn 3
l4+———arctan —————— — — =0, (37b)
4 T

8
T <21r po >
}\lmn

I, m and n are positive integers. It is readily seen that
the modes with [+#/4 =const have the same resonant
wavelengths. If

Po

27 > m?

kpo

imn

the approximations (31) can be used, and (37a) and
(37b) are solved explicitly:

-1

dm? — 1

r m n 1
I+ —=4+—-
2 1

8 7
82 <l + ——)
L 4/ |

>\lmn = 2/70

for #-modes (38a)
i n 5 dm2 3 -t
>\lmn = 2p0 l*{———I—ﬁ—___iﬁ______
18 "
872 (l + —)
- 4 i
for ¥-modes. (38b)

The fundamental radial modes (m =0, n=0) have the
resonant wavelength

1 17
Ao = 2po l:l -+ jl for ®-modes (39a)
8 8=
3 3 7+ .
Aioo = 2po [l iy + s for ¥-modes. (39b)

The modes whose resonant wavelengths are closest to
those of the fundamental radial modes are the azimuthal
modes ({—1, 2, 0). The difference in wavelength is:

for ®- and ¥-modes.

AN = X190 — Ar00 = —— Ar0,0

722
If, for instance, I —40, 100, 200, the corresponding values
po/Nwo are approximately 0, 50, 100, and

AN 1.25

03

(40)

2

2
- 10_4,

kil

5 10-5
)\ZOO 7|'2 77'2 ’

respectively.
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If the limits &, of the integral in (34) increase with-
out bound, the absolute values of the eigenvalues ap-
proach one, and the eigenfunctions can be replaced by
their asymptotic representations

F(x) const. Hen(\/f x)g—(llmﬂ

kz .
const. He, (———) gk e Bam o0 - (41)
V an(kpo)

where He, are Hermite polynomials [13]. For m=n=0
the asymptotic representation is already a good ap-
proximation if x, exceeds two. The eigenfunctions of the
integral equation describe the fields only at the reflec-
tor surface. In order to obtain the field distribution of
the resonant modes in the entire space 0<p<p,, one
can employ the same method used for the derivation of
the mode systems in beam waveguides [4], [3]. Ac-
cording to this method the amplitude functions f, (k)
are expanded into a complete system of orthogonal func-
tions. In the case of ring resonators of the type of Fig. 2
when 2a,(kpy)/k <R < «, the appropriate functions are
Gaussian-Hermite functions. The corresponding beam
mode system will be discussed in a future paper.!

[

DERIVATION OF THE Q OF RING-RESONATORS

The Q of a resonator is usually defined by
oW

- (42)

where W is the stored energy and N is the energy loss
per second. The loss N consists of two parts, the diffrac-
tion loss N, and the conductivity loss N,, assuming that
there are no dielectric losses involved. Correspondingly
we can define two Q’s:

el 0. = wlW (43)
‘TN TN, ‘
with
1 1 1
= (44)
Q@ Qa Q.

First, we determine the stored energy W in terms of the
amplitude functions f(#) and g(k)

1
W, =7efffE.E*dV (45)
W =1¥,+1, with
1
WﬁzzufffHJﬁW. (16)

The integration is extended over the entire cylindrical
space p<p;. The energy outside this space can be re-
garded negligibly small.

1 To be presented at the URSI Symposium on Electro-magnetic
Theory, Delft, Holland.
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The scalar products EE* and HH* in (45) and (46)
are expressed in terms of the potential functions & and
¥. In the case of a field derived from the potential

+e0

(o, ¢, 2) = Z ®,.(p, z)e™®

m=—uw0

(47)

we obtain with (1) and (2) after performing the integra-
tion over ¢

= po e 792B, 328,% m? 09, 9D,F,
W,=me 2, f f + —
e V0 —w LOpdz dpdz p? 9z Oz

d2®,, 9P, *
+ <k2<1>m + ) (k%m* + )} pdpdz  (48)
dz? 022
o0
Wo=mu 2

IS +o0 2k
IR
M=—rc0 0 —o0 P°

g Ad,, 9d,*
do dp

] pdpdz. (49)
Since the field is continuous at p=0, the amplitude
functions of the converging and the diverging beam
must be equal

fa () = fu®(h) = full). (50)
Hence, with (3)
Pnlp, 2) = PP (p, 2) + Pu®(p, 2)
o0
=2 F() T (yp)e=s42dh. (51)

—0

Equation (51) is inserted into (48) and (49). Performing
the integrations in p and z we obtain:

+c0 0
W. = 4rlek’pe? Z Fu(B)fn™*(R)
m?
’ J"*(vpo) + <1 - > Tn?(vpo)
Y Po"
iz 2 s
+ — ——Tulypo)Jw (vpo) | vy*dh (52)
k% vpo
o0 -0
W = 4rlekpo? Z Su(B) (1)
2
R (E e A
Y po
2 7
+ —— Tu(vpo) Tw (vpo) | yY*dh. (53)
Ypo

For fields derived {rom the potential ¥ the expressions
for W, and W,, are interchanged. The functions f,, are
replaced by the functions g,.

The amplitude functions of the resonator fields have
been assumed to be restricted to the range ]h‘ <hkk.
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Therefore, the integration in (52), (53) is essentially
limited to the finite interval —A<h<-+h If kpo>1
the Bessel functions in (52) and (53) can be replaced
by their asymptotic representations, since for # </, v is
close to k. Neglecting in the integrands of (52) and (53)
the higher order terms of 1/vp, we obtain

W, = Wy = 8rekpol' (54)
with
+o0 +w
> Fum(D)fu*(B)dh  for ®&-modes
r= +co o0 <55)
> gn()gn*(H)dh,  for W-modes.

The diffraction loss N, is the difference between the
real powers of the converging beam and that portion
of the diverging beam which is intercepted by the reflec-
tor. Since the field distribution functions of both beams
are the same at the reflector except that the energy
densities differ by a factor p2=gx*

1
Ng = <1 — *> ND (56)
kie*
where
27 o
N® = Re|:f f (B, H,W*
0 —o0
— EyWH. M) podepdz]  (57)

is the power of the converging beam. The conductivity
loss is determined by the currents on the reflector sur-
{ace:

1 2 +w
N, = — f f (HoH* + HHYpodddz  (58)
ag 0 —c0

with ¢ denoting the surface conductivity of the reflec-
tor. The z-integrations can be extended to the infinite
range — o« <z< 4 « because the fields at p= po are
very small outside the range —3z,<z< -2, The field
components can again be expressed in terms of the am-
plitude functions f and g. Using the same approxima-
tions as before NV; and N, become

e 1
Na= 87,‘/i k3<1 - —> T (59)
M k*
e k°
N,=32r— —T. (60)
u o
From (54), (59) and (60) we obtain
2kpo 1 T
Qo= —"— Q.= —*04/“ Epo. (61)
. 1 2 €

KK*

Since the surface conductivity decreases with w=1/2, Q,
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TABLE II
Q¢ OF FUNDAMENTAL RADIAL BEAM MODES (1, 0.0) FOR VARIOUS VALUES OF THE PARAMETERS po/A AND Xo= \/—(_k/Z_pg-) 29
%=1.6 1.8 2.0 2.2 2.4 2.6 2.8
po/A=20 Q4=5.00103 1.5710* 6.1010¢ 2.9108 2-108 1-107 2-107
50 1.2510¢ 3.9310¢ 1.53 108 7.3108 4-108 3-107 5-107
100 2.5010¢ 7.86 104 3.05 108 1.5108 8-108 6-107 1-108

increases proportional to w*'/2. As a numerical example
we consider a fundamental mode with the mode num-
bers m=n=0, [=40, 100, and 200. The wavelength is
assumed to be 0.4 cm.

From (39a) and (39b) we obtain approximately

%1= 20, 50 and 100 py = 8 cm, 20 cm and 40 cm.

If the reflector material is copper with a surface con-
ductivity ¢ =9.73w=1/20hm—1s1,

Q. = 3.36.10%, 8.39.10%, and 1.68.10%, respectively. (62)

Qaq can be calculated using the eigenvalues x® of Table
I. The results are given in Table II, which shows that
Qg increases rapidly with increasing xo=+/(%/2p¢)20. For
x9=2.2, Q4 is of the same order in magnitude as Q,. For
x9=2.8, Qq is already two orders in magnitude greater
than Q., and the diffraction loss is negligible compared
with the conductivity loss.

In order to obtain separation of the resonances of the
adjacent modes ([, 0, 0) and (/—1, 2, 0), the Q's must
satisfy the condition

AN A0 — Mo120 1 1
S MM T s ()
A A,0,0 Q:  Qa/1,0,0

Numerical values for AN/\ have been given in (40). A
comparison of these values with Q, and Q, from (62) and
Table 1T shows that condition (63) is satisfied if x, is
about 2 or greater.

(63)

At the 1965 G-MTT Symposium D. H. Auston and
P. F. Primich informed the authors that they were
studying ring-type resonators as devices for plasma
diagnostics.
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