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Modes in Radial Wave Beam

G. GOUBAU, FELLOW, IEEE, AND

Absfract—Resonant modes in ring shaped resonators formed by a

reflector strip bent into a circle are discussed here. These modes are

derived by superimposing two radially propagating wave beams, one

converging toward the resonator axis, the other one diverging from

this axis. The condition for resonance leads to an integral equation

whose eigenfunctions describe the field distribution at the reflector

strip and whose eigenvalues determine the diffraction loss due to the

fraction of energy bypassing the reflector.

The approximations made in deriving the radial beam mode sys-

tem are equivalent to those used for the derivation of the axial beam

mode system in a Fabry-Perot resonator. Within the limits of these

approximations the kernel of the integral equation for a ring resonator
is of the same form as the kernel of the integral equation for a parallel

strip resonator. If in the radial case the reflector strip is also curved

within the axial planes with a radius of curvature equal to the

diameter of the reflector ring, and if the width of the reflector strip is

sufficiently large, the axial field distribution of the modes is described

by Gauss-Hermite functions.

The Q of the ring resonator is determined by the diffraction loss

and by reflection loss caused by the finite conductivity of the reflector.

Formulas for the corresponding Q-values are derived. A numerical

evaluation shows that in the microwave region Q-values of the order

of 10s are feasible.

INTRODUCTION

T

HE ELECTROh!AGNETIC FIELDS in beam

waveguides and Fabry-Perot resonators can be

described by a system of axially propagating beam

modes whose cross-sectional field distribution is iter-

ated at periodic intervals. In the resonator case, the pe-

riod of iteration is one round trip of the beam between

the two reflectors. The iteration is accomplished either

by diffraction effected by limiting the beam cross sec-

tion or by transformation of the cross-sectional phase

distribution of the beam. The first case applies to the

iris-type beam waveguides [1 ] and to Fabry-Perot reso-

nators [2] with plane reflectors; the second case to

lens-type beam waveguides [3], [4] and to resonators

with spherical reflectors [2], [5].

This paper is concerned with ring-shaped resonators

as shown in Figs. 1 and 2. The field in these resonators

can be described by a system of radially propagating

beam modes which have common features with the

axially propagating modes in Fabry-Perot resonators.

The derivation of this radial mode system is based on

the following physical consideration. Assume a beam

which originates at the inner surface of the circular re-

flector strip and converges toward the axis of the reson-

ator. After crossing the center area the beam diverges

and returns to the reflector. The condition for resonance

is that the field of the returning beam when reflected at
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Ring-shaped resonator (straight contour in planes+= const. )
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Fig. 2. Ring-shaped resonator (curved contour in planes, += const.)

the circular strip has the same cross-sectional amplitude

and phase distribution as the original beam. ‘Then tlhe

reflected beam can be identified with the original beam,

and the assumed state of excitation is sustained. T1-~is

consideration of course, disregards diffraction loss which

is caused by the fact that a fraction of ener:gy of the

returning beam bypasses the reflector. This loss can be

thought of as compensated for by a distributed power

source at the reflector.

The mathematical formulation of the resonalnt condi-

tion leads to an integral equation whose eigenfuncticms
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describe the fields of the resonant modes at the reflector

and whose eigenvalues determine the diffraction loss.

The integral equation is of the same kind as that for

parallel strip resonators.

MATHEMATICAL FORMULATION OF THE

RESONANCE CONDITION

The field in the resonator from the vector potentials

& and +t where @ and $ satisfy the scalar wave equa-

tion. The corresponding field components are:

E.=k2@+$ (1)

(2)

E is the unit vector in the z-direction of a cylindrical

coordinate system p, @, z (see Fig. 1). The general solu-

tion of @ and # can be written in the form

@(p, ~, z) = ‘~ [@mtlJ(p, z) + @m(21(p, z)]e@$
.=..

s

+02

@m(l,2) (p, z) = f~(’,2)(h)Hnt121 (~p)e-ih~dh (3)
—.

W(p, o, z) = ‘~ [Vm(l) (p, z) + Vn(z) (p, z)]ejm~
.=—.

~m(l!z) (p, ,jj) =

s

‘@gm(l,2)(~)Hm(l,2)(~p)e–jhzdk (4)
—m

with

~= +~k’–kz

{

for 1L2< kz
(5)

–j~h2 – k’ for h’ > kz.

.f~(h) and g.(h) are the amplitude functions of the E-

and H-waves, respectively. Assuming the time factor

eiw~ cylindrical waves converging toward the z-axis are

described by the Hankel functions Hn(l), and waves

diverging from this axis by the Hankel functions ~~tzl.

Small diffraction losses can be expected only if the

radially propagating beams have small angles of diver-

gence from the z = O plane. We therefore assume the

amplitude functions ~ and g to be essentially zero for

lz2 > ~Z where k<<k. In particular we disregard any radial

evanescent waves (h2 > k’) and furthermore restrict p

to a finite range O <p <; in which the phase angle of

the Hankel function can be approximated by

NOVEMBER

Nm(YP)
arctan — = arctan-)

J~(Yp) I~(kp)

1 ~2/k2
— . (6)

= J~2(kp) + N~2(kp) “ “

(Jm and N~ are the Bessel Functions of the first and

second kind). The next term in this expansion causes a

phase error smaller than 6 where

(7)

If, for instance, F is 100 wavelengths and k = O. lk, we

obtain 8 = 0.005Tr. Since hz<<kz, T in the argument of the

absolute value of IZn(l z, (Tp) can be replaced by k.

Thus

an(kp) = ~ [Jm(kp) + N~(kp) ]–1. (9)
iT

With this approximation @~ becomes

%(~)(p, z)

Corresponding expressions are obtained for t~(l) and
*m(2).

In formulating the condition for resonance we assume

that the fields are essentially confined to the region

P <PO! —zO <z< +ZO where 2PO( < 2P) and 2Z0 are diam-

eter and width of the reflector strip, respectively (see

Figs. 1 and 2). This assumption is justified by the re-

sults which show that the fields decrease very rapidly in

the ~ z-directions. In accordance with this assumption

we postulate for the converging beams the following

potential distributions at p = po:

Fro(z) —Zo<z<+zo
%(l)(po, z) = o

[Z[>zo
(11)

The conditions ~~(’) (po, z) = O and (~~mflJ/13p) (po, z)= O

for I z I > ZOensure that no power is supplied to the reson-

ator from the outside.

For resonators of the kind shown in Fig. 2 which are

curved within the axial planes @ = const, the potential

distribution functions ~~ and ~~ at p = po are connected

with those at the reflector surface F~ and G~ by the rela-

tions

Fro(z) = Fm(z)e~(k/2E)”2 (13)

~m(z) = Gm(z)e~(k/2~) 2’ (14)

where R is the radius of curvature within the planes

q5=const.
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The amplitude functions ~nfl) and g~(l) of the con-

verging beams can be obtained from (3) and (4), re-

spectively, by a Fourier transformation in z.

At the center of the resonator the converging beam

transforms into the diverging beam. The corresponding

amplitude functions j~tz) and g~(z) are obtained from

the condition that the total fields +~(1) +~~(z) and

v~fl) +VnfZ) are finite at p = O. This requires

fro(’)(h) = jm(’)(lz), gin(l)(k) = gfi(’)(h). (17)

The potentials @~(2) and ~~(z) of the diverging beam

are obtained by inserting (15), (16), and (17) into (3)

and (4). At p =po

1 +.

Ss

+.0
, ~m(z) (7PO)

%(’) (pi), z) = —
2r -m —20

~rn(.m+’(k’2R)r &( I)(7po)

. e-~h(’-rld{dk (18)

1 +.

Sf

+.0 Hnt(’)(wo)
wm(2)(Po, z’) = Z _ G~(f)e+j@/2~j~’

. —20 ~Hm(l)’(~pJ

. e-~h~z-~~d{dk. (19)

The boundary condition at the reflector surface re-

quires that the tangential electric field components be

zero. Since part of the diverging beam bypasses the

reflector, resonance can be sustained only if power is fed

into the system, for instance by a distributed source at

the reflector surface which raises the amplitude of the

diverging beam by a factor P. This factor P is assumed

to be positive real so that the source delivers only real

power and does not detune the resonator.

In the case of resonators of the kind in Fig. 2 we again

have to consider the phase shift between the reflector

surface and the cylinder surface.

The resonance condition can then be formulated as

follows :

Eb = 0:

~ ~ [@~l(pO, ~)e-~@/Z~z’ + #@~~l(pO, ~)e+,@/znlzz]
po az

+ k ~ [~~’l)(p, ~)e–j(~/?R).’

+ flW~(2)(p, z)e+~@/ZR)~’’]P=PO= O (20)

E,=O:

O’+%)’@m(’)(poz)e-’(k’’R)z’

RADIAL RESONATOR MODES
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The condition EZ = O is only an approximation for

resonators shown in Fig. 2, since Ez differs somewhat

from the actual tangential component in the <j= const.

planes. It is readily seen that the 0- and W-fields are

decoupled. From (21) we find

@m(l)(po, z)e ‘j@/2~)” + p%(z) (PO, z)e+j@/2~)~2

= Aekjkz = () —Zo<z<+zo. (22)

The constant A must be zero, since the supposition of

radial beams excludes plane waves in the ~ z-directions.

Therefore with (20)

~ [v~(l)(p, z)e-~(~~~)$’ + p~~(z(p, z)e+j(~/~R)Z2],=,P, = ()
ap

— ZO < z < + Z,. (23)

Substituting in (22) @~(lJ with (11) and (13), d~w,(~)with

(18) we obtain a homogeneous integral equation of the

second kind for the distribution function F., of the elec-

tric vector potential on the reflector surface

Fro(z) == p J ‘Z”K.(Z. .(-) Ffn(i-)4-

—80

— Zo < z < + z~ (24)

Hm,(2)(7Po)

Hm,(’) (~po)

(2!5)

Similarly by substituting (12), (14), and (19) into (’23)

we obtain the integral equation for the distribution furlc-

tion Gn of the magnetic vector potential on the reflector

surface:

J

+20

G.(z) = f ~T(z, .OGAW
—S0

– ‘0 < ‘ << + ‘0 (26)

.e–jh(-f)dji. (27)

Using the approximation (8) for the Hankel functions

the integral in the kernel (25) can be evaluated analyti-

cally. One obtains

with

.~rnt(kpo)
~m(kpo) = arctan

1~ (kp,) “

The kernel (27) contains the differentiated Hankel

functions which can be approximated by
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Hm(~)’(’yp) = .H., (i) ’(~p)eT, (h’/k’)am(kP) o<p<~ (29)

since amplitude terms of the order kz/k2 can be neglected

within the range of the approximations.

Thus evaluating the integral in (27)

with

Nn’(kpo)
~~’ (kp~) = arctan

Y~’(kpO) “

If kpo>>m’, G, & and fl~’ can be approximated:

1
O&@o) = ~ kpo

() 4m2 – 1
,8m(kPO) = kpo – m + ~ ~ +

8kpo

()

17r 4m2 + 3
~m’(kp,) = kp, – m – ~ ~ +

8kpo “

Using the substitutions

(30)

(31)

(32a)

(32b)
{

F~(z) @ – fields
F(.Y) =

G~(z) V – fields

lk
~=— z,

2 V’a~(kp,)
g=: k f,

2 <am(kpo)

lk ~ _ ~ am(kpo)
%0=— — — = 2U (32c)

2 ~a~(kp~) ‘o’ kR

the integral equations (24) and (26) can be reduced to

a normalized form

s

+ co

F(x) = JL ~(g)~–i. (.’+~’)ei.~~g

427T -Z,

— x,< x < + %0. (33)

The eigenfunctions F(x) = F(”)(x) determine the field

distribution of the various modes of the resonator at the

reflector surface, and the eigenvalues K = K(”) the cor-

responding diffraction loss.

DISCCTSSION

The integral equation (33) is of the same form as the

one which is obtained for the parallel strip resonator

which has been studied by a number of authors. The

case of Fig. 1 where the reflector is of cylindrical shape

(1? = ~, u= 1/2) corresponds to a plane-parallel strip

resonator [2], [6]; the other case (Fig. 2) with R # ~

corresponds to a parallel strip resonator with two identi-

cal parabolic reflectors [7 ]– [9 ]. If R is finite but greater

than pn, the field is primarily determined by the radii

po, and R and depends little on the width of the reflector

strip, provided

1 k
xo=— Zo

2 tiffm (kPo)

is sufficiently large.

The case

a~(kpo)
R=4—

k

corresponds to the parallel strip resonator with confocal

reflectors [5], [10 ]. If kpo>>l the approximation for

am in (31) applies so that R = 2p0. The corresponding

integral equation is of particular interest in that the

kernel reduces to a Fourier kernel:

K(x, ~) = +xe~’~. (34)

The eigenfunctions of this integral equation are angu-

lar prolate spheroidal functions [11 ]. Using Flammer’s

notation [12 ]

()Ff~)(x) = SO. $02, ~ .
Xo

(35)

The function SO. form in the range –x. <x < +x. a

complete orthogonal system

J_>..(xo’1:)soh(.o’7 :)dx=8nhN.
~l,here A7n is a normalization constant, The son are real

functions of x which are even and odd with n. The cor-

responding eigenvalues K(n) are real for even n and

imaginary for odd n:

(36)

where Ron(l) are radial prolate spheroidal functions. In

view of subsequent calculations of the Q of ring reson-

ators, numerical values of K(o) are given in Table 1.

Values for K(”) with n >0 can be found in the literature

[5], [9].

TABLE I

THE LOWEST ORDER EIGENVALUE .(o) OF INTEGRAL (33)

Xo 1.6 1.8 2.0 2.2 2.+ 2.6 2.8
—

Jo) 1.02614 1.00808 1.00206 1.00043 1.00001 1.00008 1.00000
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Equations (32a) and (36) yield relations for the reson-

ant wavelengths AZ ,~,n. The quantity /J in (32a) is posi-

tive real, as explained in the text following equation

(19). Hence for resonant modes derived from the poten-

tial @ we obtain

()N. 2. ~
1 Alm71

1 + ~ – — arctan
3

—_= O, (37a)
n-

()

8
J. 27r ~

Alm.

and for the modes derived from the potential V

1, m and n are positive integers. It is readily seen that

the modes with 1+n/4 = const have the same resonant

wavelengths. If

the approximations (31 ) can be used[, and (37a) and

(37b) are solved explicitly:

[

4m2 – 1 –1
Almn=2po l+;+:–&–

( )1
8# l+:

for O-modes (38a)

[

%sz + 3 ‘1
Ah. =2p!l l+:+:–;–—

( )1
87r’ 1+:

for V-modes. (38b)

The fundamental radial modes (m= 0, n = O) have the

resonant wavelength

[

1 –1

km=2po l–++— 1 for @-modes
87r’1

(39a)

[

5 3 -’
A200=2po 1–1+— 1 for W-modes.

87r21
(39b)

The modes whose resonant wavelengths are closest to

those of the fundamental radial modes are the azimuthal

modes (1 — 1, 2, O). The difference in wavelength is:

2
AA = AZ–1,2,0 — 11,. >O = ~hl, o,o for @- and W-modes.

If, for instance, 1–40, 100, 200, the corresponding values

po/Atoo are approximately O, 50, 100, and

Ai 1.25 2 5
—. >. 10–3, —. 10–4, ~. 10–5,
Aloo

(40)
7r~

respectively.
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If the limits ~ XO of the integral in (34) increase with-

out bound, the absolute values of the eigen values ap-

proach one, and the eigenfunctions can be replacecl by

their asymptotic representations

F(’)(.Y) = const. IIe.(<j x)e–(1/2JZ’

‘cOnstHe’L&)”k2z218c7m(kpo)
7 (41)

where He. are Hermite polynomials [13]. For m = ti = O

the asymptotic representation is already a good ap-

proximation if XO exceeds two. The eigenfunctions of the

integral equation describe the fields only at the reflec-

tor surface. In order to obtain the field distribution of

the resonant modes in the entire space O <p <po, one

can employ the same method used for the derivation of

the mode systems in beam waveguides [4], [3]. Ac-

cording to this method the amplitude functions ~,,,(k)

are expanded into a complete system of orthogonal func-

tions. In the case of ring resonators of the type of Fig. 2

when 2a~(kpu) /k < R < ~, the appropriate functions are

Gaussian-I-Iermite functions. The corresponding beam

mode system will be discussed in a future paper. 1

DERIVATION OF THE Q OF RING-RESON.~,TORS

The Q of a resonator is usually defined by

cdw
Q.y (42)

where W is the stored energy and N is the energy 10SS

per second. The loss N consists of two parts, the diffrac-

tion loss N~ and the conductivity loss NC, assuming that

there are no dielectric losses involved. Correspondingly

we can define two Q’s:

cow
Qd=~

cow
QC. T

c

(43)

with

1
–~+~” (44)

~–Qd Q.

First, we determine the stored energy Win terms of the

amplitude functions j“(h) and g(h)

W.=+e
H’s

E.E*dV (45)

W= W+ ?Vm with

JVm = : &
SJ’S

H. H*dV. (16)

The integration is extended over the entire cylindrical

space p < po. The energy outside this space can be re-

garded negligibly small.

1 ‘rO be p~e~ented at the URSI Symposium on E.lectro-maglnetic

Theory, Delft, Holland.
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The scalar products EE” and 2YEI* in (45) and (46) Therefore, the integration in (52), (53) is essentially

are expressed in terms of the potential functions @ and limited to the finite interval – 1 <k < + I?.. If kp~>>l

V. In the case of a field derived from the potential the Bessel functions in (52) and (53) can be replaced

+. by their asymptotic representations, since for h < i, ~ is

% 4’7 z) = E @m(P, z)ej~+
(47) close to k. Neglecting in the integrands of (52) and (53)

m=—m the higher order terms of l/~pO we obtain

we obtain with (1) and (2) after performing the integra- We = W~ = 87rek3por (54)

tion over g5
with

~:m~,y:~!~+$~%w.=m~

1~:mj-‘“.L(W.*(W2for %-modes
—.

(

132%

)(

8’%*

)1
r= (55)

+ k’% + ~
kZ@~* + — ~dpdz (48)

(?Z2 ~ J ‘“gm(lz)gm”(k)dk, for V-modes.
m=—. —cc

13@?m IM.*
+ k’ 1Pdpdz. (49)

ap dp

Since the field is continuous at p = O, the amplitude

functions of the converging and the diverging beam

must be equal

fro(’) (h’) = jm(’)(h) = jm(h,). (50)

Hence, with (3)

@m(p, 2) = %(1) (p,%) + %(~)(p, z)

S

+.

=2 ~~(k)~~(~p)e-’%%. (51)
—m

Equation (51) is inserted into (48) and (49). Performing

the integrations in p and z we obtain:

W, = 4Tr2ek2p02 ~~m J ‘mfm(k)f.’(k)
—.

+ 2 ~~(’YPo)J~’ (7Po) -r~*dlZ.
7P”

The diffraction loss Nd is the difference between the

real powers of the converging beam and that portion

of the diverging beam which is intercepted by the reflec-

tor. Since the field distribution functions of both beams

are the same at the reflector except that the energy

densities differ by a factor pz = KK*

where

(56)

2U +m

N(l) = Re
[J S

(~z(l)~o(l)”

o —m

— ~+(n~zw’)pod+dz] (57)

is the power of the converging beam. The conductivity

loss is determined by the currents on the reflector sur-

face:

1 2T +m
ATc = —

Ss
(H+H+* + HzHz*)pod@dz (58)

a“_w

with u denoting the surface conductivity of the reflec-

tor. The z-integrations can be extended to the infinite

range — w <z < + w because the fields at p = PO are

very small outside the range —zO <z < +zO. The field

(52) components can again be expressed in terms of the am-

plitude functions j and g. Using the same approxima-

tions as before Nd and N. become

, k,

Nc=32?r —-r.
Pa

(53)
From (54), (59) and (60) we obtain

r (59)

(60)

For fields derived from the potential T the expressions
2kpo

for W. and W~ are interchanged. The functions f~ are

Qd =

1
Q, = +- cr+/~ kpo. (61)

E

replaced by the functions g~.
l–—

KK*

The amplitude functions of the resonator fields have

been assumed to be restricted to the range I h I < k<<k. Since the surface conductivity decreases with U-ll’, Qc
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TABLE II

@ oF FuNrsAMENTAr- RADIAL BEAM MODEs (1, O. O) FOR VARIOUS VALUES OF THE PARAMETERS p,~~ AND x,= ~(k12Po) z.
——.

xo=l.6 1.8 2.0 2.2 2.4. 2.6 2.8
—

pO/A= 20 Q~=5.00108 1.57104 6.10104 2.9106 2106 1.107 2.1o7

50 1.25104 3.93104 1.53105 7.310’ d. 106 3.107 5.107
.— .—

100 II 25010’ 7.86 1(2’ 3.05105
. . . . . . . . . .
1.51(JO ~. 1(J6 6.IU’ 1.10’

increases proportional to u+l /z. As a numerical example

we consider a fundamental mode with~ the mode num-

bers m = n = O, 1=40, 100, and 200. The wavelength is

assumed to be 0.4 cm.

From (39a) and (39b) we obtain approximately

PO
– 20, 50 and 100p. = 8 cm, 20 cm and 40 cm.

T“

If the reflector material is copper with a surface con-

ductivity a =9. 73u-1/Zohm-ls-l.

Qc = 3.36.105, 8.39.105, and 1.68.106, respectively. (62)

Q, can be calculated using the eigenvalues K(o) of Table

1. The results are given in Table II, which shows that

Q, increases rapidly with increasing X. =: <(k/2po)z0. For

X.= 2.2, Q~ is of the same order in magnitude as Q.. For

xo = 2.8, Qd is already two orders in magnitude greater

than Q., and the diffraction loss is negligible compared

with the conductivity loss.

In order to obtain separation of the resonances of the

adjacent modes (J, O, O) and (1 — 1, 2, O), the Q’s must

satisfy the condition

AA A2,0,0 – At_l,2,0

()

> L+L (63)
1= Al,rJ,iJ Q. Q~ 1,0,0’

Numerical values for A1/A have been given in (40). A

comparison of these values with Qc and Q~ from (62) and

Table II shows that condition (63) is satisfied if X. is

about 2 or greater.

At the 1965 G-NITT Symposium D. H. Auston and

P. F. Primich informed the authors that they were

studying ring-type resonators as devices for plasma

diagnostics.
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